Transcription factors SOD7/NGAL2 and DPA4/NGAL3 act redundantly to regulate seed size by directly repressing KLU expression in Arabidopsis thaliana.

نویسندگان

  • Yueying Zhang
  • Liang Du
  • Ran Xu
  • Rongfeng Cui
  • Jianjun Hao
  • Caixia Sun
  • Yunhai Li
چکیده

Although seed size is one of the most important agronomic traits in plants, the genetic and molecular mechanisms that set the final size of seeds are largely unknown. We previously identified the ubiquitin receptor DA1 as a negative regulator of seed size, and the Arabidopsis thaliana da1-1 mutant produces larger seeds than the wild type. Here, we describe a B3 domain transcriptional repressor NGATHA-like protein (NGAL2), encoded by the suppressor of da1-1 (SOD7), which acts maternally to regulate seed size by restricting cell proliferation in the integuments of ovules and developing seeds. Overexpression of SOD7 significantly decreases seed size of wild-type plants, while the simultaneous disruption of SOD7 and its closest homolog DEVELOPMENT-RELATED PcG TARGET IN THE APEX4 (DPA4/NGAL3) increases seed size. Genetic analyses indicate that SOD7 and DPA4 act in a common pathway with the seed size regulator KLU to regulate seed growth, but do so independently of DA1. Further results show that SOD7 directly binds to the promoter of KLUH (KLU) in vitro and in vivo and represses the expression of KLU. Therefore, our findings reveal the genetic and molecular mechanisms of SOD7, DPA4, and KLU in seed size regulation and suggest that they are promising targets for seed size improvement in crops.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular genetic control of leaf lifespan in plants - A review

Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morpholog...

متن کامل

MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis.

Abscisic acid (ABA) and gibberellin (GA) are two antagonistic phytohormones that regulate seed germination in response to biotic and abiotic environmental stresses. We demonstrate here that MOTHER OF FT AND TFL1 (MFT), which encodes a phosphatidylethanolamine-binding protein, regulates seed germination via the ABA and GA signaling pathways in Arabidopsis thaliana. MFT is specifically induced in...

متن کامل

Isolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress

Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis.  In the present study...

متن کامل

The Arabidopsis BEL1-LIKE HOMEODOMAIN proteins SAW1 and SAW2 act redundantly to regulate KNOX expression spatially in leaf margins.

In Arabidopsis thaliana, the BEL1-like TALE homeodomain protein family consists of 13 members that form heterodimeric complexes with the Class 1 KNOX TALE homeodomain proteins, including SHOOTMERISTEMLESS (STM) and BREVIPEDICELLUS (BP). The BEL1-like protein BELLRINGER (BLR) functions together with STM and BP in the shoot apex to regulate meristem identity and function and to promote correct sh...

متن کامل

Arabidopsis bZIP16 transcription factor integrates light and hormone signaling pathways to regulate early seedling development.

Transcriptomic adjustment plays an important role in Arabidopsis thaliana seed germination and deetiolation in response to environmental light signals. The G-box cis-element is commonly present in promoters of genes that respond positively or negatively to the light signal. In pursuing additional transcriptional regulators that modulate light-mediated transcriptome changes, we identified bZIP16...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 27 3  شماره 

صفحات  -

تاریخ انتشار 2015